Determinação da dosagem ideal de floculantes e do tempo de mistura na etapa de floculação no processo tratamento de água de consumo

António Armindo Rúben Monjane

Departamento de Investigação & Extensão, Instituto Superior de Transportes e Comunicações, Prol. Av. Kim Il Sung, Maputo, Moçambique

e-mail de contacto: anmonjane@isutc.ac.mz

Resumo - A água é um recurso vital que requer um tratamento prévio antes de ser consumido a fim de prevenir doenças e garantir um bom estado de saúde. Em Moçambique a taxa de cobertura da rede de abastecimento de agua nas zonas urbanas é de 80,04% e nas zonas rurais é praticamente inexistente. Nesta base torna-se indispensável o conhecimento e domínio de técnicas básicas de tratamento de água, para garantir a saúde pública (DNAAS). O tratamento de água é um processo longo de transformação pelo qual a água passa, até chegar em condições de uso para abastecer a população, independente da função que ela terá. Este artigo apresenta os resultados do estudo sobre uma etapa fundamental no processo de tratamento de água e foi realizado num laboratório de pesquisa em Moçambique. O estudo baseou-se no processo de coagulação onde se pretendia aferir uma concentração óptima de floculantes e o tempo necessário para misturar a água por agitação rápida para um bom processo de floculação. Deste modo, foram realizados vários ensaios de tratamento de água usando um agente coagulante/floculante (FeCl₃), e controlando os parâmetros: concentração do floculante, tempo de mistura da amostra de água e temperatura. Os resultados obtidos neste estudo indicam que: a formação de flóculos depende da rapidez do tempo na agitação da amostra de água e do valor de pH; o tamanho das partículas depende da rapidez do tempo na agitação da amostra de água, isto é quanto mais rápido o movimento centrífugo, maior e o tamanho das partículas (flóculos). Pequenos flocos formam-se no início e crescem com o tempo. Conclui-se que os parâmetros; tempo de agitação rápida de 30 segundos, pH=4 e concentração do coagulante FeCl3 em 0,8 mol/l são ideais para uma floculação mais eficaz.

Palavras-chaves – Tratamento de água, Floculação e Coagulação

I. INTRODUÇÃO

A água potável é de grande importância para a sociedade actual, não só devido à sua disponibilidade limitada, mas também por razões de saúde e segurança. Embora a maior parte da superfície da Terra esteja coberta de água, aproximadamente 97% é água salgada e, infelizmente, não é adequada para muitas actividades humanas [1].

É importante garantir que todos tenhamos água tratada e

limpa para beber, que não esteja contaminada por microorganismos, matéria orgânica ou outros produtos químicos. Existem vários métodos para testar a presença de poluentes e outros contaminantes na água. Os mesmos poluentes que nos prejudicam também podem prejudicar a vida de outros animais e plantas [2]. Os processos de tratamento começam geralmente com a remoção de partículas, muitas vezes através de floculação e filtração, que por vezes é complementada por pré-oxidação. A floculação tem como objectivo coagular os mais finos componentes estranhos em suspensão ou coloidais na água, de modo a poder os separar melhor e remover da água por sedimentação ou filtração. Este é principalmente um processo puramente físicoquímico e técnico [3].

Propriedades importantes das partículas na água incluem: i) concentração do coagulante, ii) tamanho de partículas (flóculos); iii) quantidade e distribuição de partículas; iv) formato da partícula e v) interação partícula – solvente [4]. Devido a estas propriedades, a nossa discussão centra-se na relação entre os valores de turbidez (por medição de extinção) e o tamanho das partículas.

II. ENUNCIADO DO PROBLEMA E OBJECTIVOS

2.1. Enunciado do problema

Como obter água de boa qualidade através do tratamento convencional tendo em conta o processo de floculação?

2.2. Objectivos

Esta investigação pretendia conduzir a um processo de floculação ideal e, ao mesmo tempo, melhorar o processo de tratamento da água.

O objectivo do estudo foi determinar uma concentração óptima de floculantes e o tempo necessário para misturar a água por agitação rápida para um bom processo de floculação.

III. METODOLOGIA - PROCEDIMENTO EXPERIMENTAL

A. Testes Preliminares

A primeira tarefa foi realizar um teste preliminar a fim de preparar a água bruta para experiências direccionadas, ou seja, remoção de sólidos em suspensão ou enriquecimento direccionado da água bruta com substâncias orgânicas, nas ISURESEARCH Monjane (2024)

seguintes etapas [5], [6]:

i) Filtração de água bruta

A água bruta foi filtrada com recurso a um biofiltro (filtro de partículas de 5 - 20 μ m), que removeu a matéria em suspensão da água bruta.

ii) Concentração de água

Num processo circular, a água filtrada foi enriquecida com substâncias orgânicas adicionais em 80 minutos, utilizando uma osmose inversa/osmose, inverso tipo UO 400/especial [5,6]. O valor de pH, a condutividade e o valor da absorbância (SAK) foram medidos a cada 20 minutos.

B. Experiência de floculação

A água pré-tratada acima referida é colocada num copo de Becker de 2000 ml e mediram-se os parâmetros como: temperatura, valor de pH, turbidez, condutividade e SAK são medidos a 254 nm (ver Tabela 1).

Guia 1: Parâmetros medidos na água antes da experiência

Para os ensaios de floculação foi necessário determinar o valor do pH e a quantidade de floculantes para determinar as condições ideais.

As experiências foram realizadas em sequência, uma após a outra em três copos de Becker de 2000 ml e com a concentração de 0,8 mol/l de FeCl₃ (cloreto férrico) que foi doseado como floculante. O valor de pH desejado seria determinado em cada copo de Becker, adicionando HCl 0,1M para se ajustar.

Seguiu-se uma agitação rápida (30 segundos no IKA T25 Digital ULTRA TURRAX) e depois uma agitação contínua

no agitador da série AQUA LYTIC a uma velocidade de agitação de 40 rotações durante 20 minutos [7]. A Figura 1 ilustra o fluxograma de todo o procedimento experimental da floculação. Para sedimentação, os copos de Becker permaneceram novamente durante 20 minutos e a turbidez precipitou. Os valores medidos na experiência estão resumidos na Tabela 2.

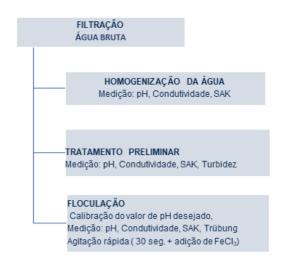


Figura 1. Fluxograma da experiência de floculação.

IV. RESULTADOS

Com base nos resultados de medição da Tabela 2, determinou-se que o valor de pH=4 e a dosagem de 0,8 mol/l de $FeCl_3$ representam uma condição ideal para a floculação. Foram então realizados ensaios de floculação com medição simultânea da extinção e do tamanho das partículas através de uma sonda de extinção dinâmica - DEP, em diferentes intervalos de tempo de 10, 20, 30 e 40 segundos [8]. Esses resultados da medição são apresentados nas gráficos seguintes (Figura 2, Figura 3 e Figura 4).

Tabela 1. Parâmetros medidos no pré-tratamento da água bruta.

Temperatura (°C)	pН	Turbidez (FNU)	Condutividade (µS/cm)	SAK – 254 nm (m ⁻¹)
8	7,8	6,20	558	34,5

Tabela 2. Resultados da experiência de fluculação.

Dosagem de FeCl ₃	pН	Turbidez	Condutividade	SAK - 254 nm
(mol/L)		(FNU)	(µS/cm)	(m^{-1})
Água bruta	7,87	0,95	575	45,1
0,8	4	1,80	670	28,5
0,8	4	1,83	658	30,9
1,0	4	1.47	620	67,8
1,0	4	1.42	613	66,2

Com o tempo reduzido (10 segundos) de mistura de água, verifica-se a formação de flóculos de tamanho menor e em menos quantidade (Figura 2).

No tempo de 20 segundos na mistura da água, verifica-se um aumento na quantidade e tamanho dos flóculos que se formam neste processo (Figura 3).

Aqui observa-se claramente um aumento considerável tanto do tamanho como da quantidade dos flóculos. Assim, se pode depreender que o tempo de mistura de água, a concentração do coagulante, jogam um papel crucial no

processo de floculação.

Monjane (2024) ISURESEARCH

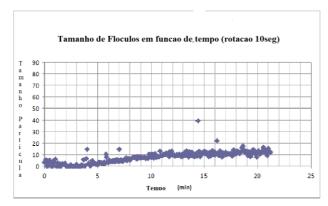


Figura 2. Formação de Flóculos (10 segundos de rotação) (tamanho das partículas em *nm*).

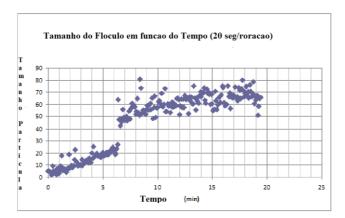


Figura 3. Formação de Flóculos (20 segundos de rotação) (tamanho das partículas em *nm*).

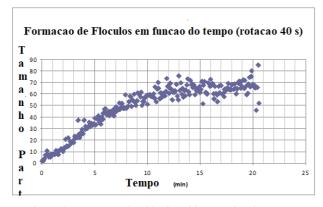


Figura 4. Formação de Flóculos (30 segundos de rotação) (tamanho das partículas em *nm*).

V. CONCLUSÕES

Neste estudo conclui-se que o tempo para proporcionar a mistura rápida e lenta de floculação, assim como a concertação do coagulante influenciam na formação de coágulos e consequentemente a remoção da cor e turbidez, durante o processo de coagulação/floculação.

A Figura 5 ilustra de forma resumida a relação existente entre tempo de mistura da água com o coagulante - o tamanho e quantidade de flóculos em vários ensaios experimentais realizados neste estudo. Nota-se assim, que os parâmetros; tempo de agitação rápida de 30 segundos, pH=4 e concentração do coagulante FeCl₃ em 0,8 mol/l são ideais para uma floculação mais eficaz.

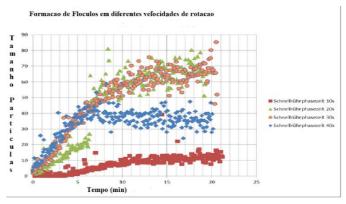


Figura 5. Comparação de diferentes resultados de medição (tamanho das partículas em *nm*).

REFERÊNCIAS

- [1] Heath Canada. *Guidelines for Canadian drinking Water quality*, 6th edition, Ottana: Canada 4Communication Grou, 1997
- [2] Haman & Bottcher: Water quality, 1986
- [3] Monjane A.A. R.. Química Ambiental, Maputo, 2023
- [4] Shaw, W. J: Introduction to colloid and Surface Chemistry, Butterworth, London, 1966.
- [5] American Water Work Association (AWWA). *Water quality and treatment A handbook of community Water supplies*, 4th ec. USA, 1990.
- [6] Exall, K. N.; Vanloon, G. W. Using coagulants to remove organic matter. *Journal-American Water Works Association*, 2000, 92(11), 93-102.
- [7] Pavanelli G.: Eficiência de diferentes tipos de coagulantes na coagulação, floculação e sedimentação de agua com cor ou turbidez elevada, São Carlos, 2001
- [8] Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., & Tchobanoglous, G. *Water Treatment Principles and Design*, 2. Edition 2005, p. 646 647.